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trix equation actually solved (compressed matrix) in comparison to the
original full-size matrix. Figs. 3 and 4 show the electric field at various
time steps after the fifth (640 out of 8192 basis functions and compres-
sion of 92%) and fifteenth iterations (1920 out of 8192 basis functions
and compression of 77%), respectively, together with the reference re-
sultEREF

x
.

Finally, for comparative purposes, Fig. 5 illustrates a few results ob-
tained using the explicit scheme (dashed line). Obviously, the explicit
scheme does not yield the right solution (solid line). The results given
here are for a shorter time duration than displayed in Figs. 3 and 4. This
duration is limited because the explicit solution very soon becomes un-
stable. Also, the time intervals between successive graphs are shorter
than in Figs. 3 and 4. This is done in order to illustrate in more detail
the inherent lag of the explicit solution behind the right one.

IV. SUMMARY AND CONCLUSIONS

A wavelet-based MoM analysis of an implicit TDIE formulation for
the problem of electromagnetic pulse interaction with an air layer in
a dielectric medium has been presented. We have demonstrated the
inadequacy of the explicit formulation in this case, and have showed
that only the implicit formulation is the proper one for analyzing the
problem at hand. In addition, the solution has been augmented by ap-
plying the IMC method. This is a stable iterative procedure, whereby
the solution accuracy, at every spatial location and simultaneously at
all the times of interest, is gradually refined.
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Investigation of Static and Quasi-Static Fields
Inherent to the Pulsed FDTD Method

Rolando Pontalti, Jacek Nadobny, Peter Wust, Alessandro Vaccari,
and Dennis Sullivan

Abstract—This paper demonstrates that trailing dc offsets, which can af-
fectE- or H-fields in finite-difference time-domain simulations, are phys-
ically correct static solutions of Maxwell’s equations instead of being nu-
merically induced artifacts. It is shown that they are present on the grid
when sources are used, which generates nondecaying charges. Static solu-
tions are investigated by exciting electric and magnetic dipoles models with
suitable waveforms.

Index Terms—Divergence, FDTD method, Hertzian dipole, infinitesimal
current element, triple cosine.

I. INTRODUCTION

The pulsed finite-difference time-domain (FDTD) method [1] is
based on a transitory system excitation coupled with the Fourier
transform of its response. Excitation is introduced either by “soft”
(added) or “hard” (fixed) sources [2]. We use soft sources to model
elementary (or Hertzian) electricp and magneticm time-varying
dipoles, and compare FDTD results with the analytic solutions, in the
static and quasi-static cases.

II. STATIC FIELDS IN FDTD

The FDTD algorithm solves an initial boundary-value problem using
only Maxwell’s curl equations. Let us investigate briefly the way in
which these vector equations determine the fields’ temporal behavior.
To this end, we need to study the divergence ofB andD, assuming
sources defined as an impressed current density termJs in therrr�H

equation. Taking the divergence of both sides of the curl equations, with
the initial values(rrr �B)t=0 � 0 and(rrr �D)t=0 � 0, we notice the
following.
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• rrr �B will be zero at any later time so that therrr �B = 0 scalar
equation is indirectly fulfilled.

• Forrrr �D, the following time evolution equation holds at every
space location:

(r �D)t = �

t

0

(r � Js)t dt0: (1)

Thus,rrr�Dmay be different from zero at a timet if the integral on the
right-hand side of (1) does not vanish. Equation (1) indicates the way
in which free charges are introduced by the FDTD algorithm, without
explicitly using a charge density function. In the curl equations, in fact,
the only allowed physical sources are currents, but not charges.

In order to model an electric dipole of a momentp = pz(t)êz we
use one infinitesimal current element (ICE) termIs(t) [2]. The ICE is
associated with a current densityJs(t), located in aEz grid position
indicated byigap, jgap, andkgap + 1=2. This will also be the position
of p. Is(t) andpz(t) are related in the following way:

pz(t) = �z
t

0

Is(t
0)dt0: (2)

For a magnetic dipole of a momentm = mz(t)êz, we use four equal
ICE terms, forming a loop around theHz grid point atiloop + 1=2,
jloop + 1=2, and kloop and involving the four nearestE compo-
nents, i.e.,Ex(iloop + 1=2; jloop; kloop); Ey(iloop + 1; jloop +
1=2; kloop); �Ex(iloop+1=2; jloop+1; kloop); �Ey(iloop; jloop+
1=2; kloop). Is(t) andmz(t) are related as

mz(t) = Is(t)�x�y: (3)

With ap term, one obtains, forrrr�Js, the values�Is(t)(�x�y�z)�1

at the grid points above and below the gap, respectively, and zero
elsewhere. By setting these values into (1), the following two charges
are accumulated, after a time intervalT , in the FDTD grid at
(igap; jgap; kgap + 1) and (igap; jgap; kgap), respectively,

Q(T ) � �x�y�zr �D = �

T

0

Is(t)dt: (4)

If the Is(t) pulse shape has a nonzero mean value on[0; T ], charges
in (4) will not disappear at timeT . Instead, they actually produce an
electric dipole of a momentQ(T )�z with its corresponding staticE
field, which is built up after the signal rising front has passed. To prove
the FDTD ability in modelingp orm static and quasi-static fields, we
first apply the so-called triple cosine (TC) [3], a compact nonzero mean
value pulse on a time interval[0; � ]. We then introduce the following
suitable normalized waveforms:

DTC(t) = �
d

dt
TC(t)

ITC(t) =
1

�

�

0

TC(t0)dt0

IITC(t) =
1

�

�

0

ITC(t0)dt0:

DTC is a zero mean value compact pulse,ITC is a smoothed step
function, andIITC is a ramp function with a smoothed onset (the
latter two with a rise time of� ). We use the above waveforms forIs(t)
in (2) and (3) as follows:

• TC to analyze thep-dependentE-field term—the1=r3 electro-
static—by observingEr andE� for t > � ;

• ITC to analyze thedp=dt-dependentH-field term—the1=r2

quasi-static, which is neither radiative, nor electrostatic—by ob-
servingH� for t > � ;

Fig. 1. Circuit model of the source with its internal impedanceR.

• ITC to analyze them-dependentH-field term—the1=r3 mag-
netostatic such as the one produced by a constant current—by
observingHr andH� for t > � ;

• IITC to analyze thedm=dt-dependentE-field term—the1=r2

quasi-static—by observingE� for t > � .
NonradiativeE- andH-fields are accurately detectable after1=r ra-
diative contributions have propagated out of the grid. Using a linearly
increasing function likeIITC, the iteration of the FDTD algorithm is
stopped before numerical overflow occurs.

III. A VOIDANCE OF STATIC FIELDS

There are two strategies to prevent static solutions in the FDTD grids.
First, the FDTD run can end up with a zero right-hand side in (1), what
is ensured by using a zero mean value pulse as introduced in the pre-
vious section, or, for example, bipolar pulses proposed in [4]. Second,
charges can be dumped using lumped resistors across the grid points
where they accumulate [5]. We intend resistorR to be the internal
impedance of the source, as in the circuit model of Fig. 1. The lumped
resistor is then achieved assuming� = 1=(�R) as conductivity for
theE component corresponding to the ICE (� being a cell step size).
The source could be the one feeding the gap of a linear antenna, also
in the limiting case of a very short dipole of length�, i.e., an electric
Hertzian dipole (HD) in FDTD. Assuming the potential of the point
from whichIs flows out to be positive, the voltage acrossR is given
by

Vgap(t) = Egap(t)� (5)

where we defineEgap as the reversedE component corresponding to
the ICE. By Fig. 1, the corresponding gap current is then

Igap = Is � IR = Is � �Egap�
2: (6)

The use of (6) is direct and avoidsH line integration around the gap, a
technique which is usually adopted in the FDTD method to obtain cur-
rents. We emphasize that counterclockwise (with respect to the positive
reference orientation of the ICE) line integration does not giveIgap di-
rectly, but rather a total currentItot including a displacement contribu-
tion

Itot = Igap + Idisp = Igap � "r"o
dEgap

dt
�2: (7)

To avoid problems of the kind reported in [6], theIdisp term should be
subtracted from the “measured” currentItot.

IV. RESULTS

Dipoles were implemented in a 80� 160� 160 cubical grid and lo-
cated along thez-axis on a symmetry plane perpendicular to thex-axis.
The cell size� was 2.5 mm and the time step was�t = �=(2c) �=
4:166 ps. Absorbing boundary conditions (ABCs) were second-order
Higdon [7]. The pulse duration� was (1.8 GHz)�1 �= 0:555 ps. Waves
took 1.15 ns, or approximately2� , to reach the farthest boundary points
and, consequently, an overall simulation timeT = 4� was used. Fig. 2
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Fig. 2. FDTD results (open symbols) versus analytic solutions (solid and
dashed lines) forp. The slope is�60 dB/decade, i.e., a1=r law for E and
E . The subplot is an enlarged view of the region within two cell step sizes
from the source.

Fig. 3. FDTD results (open symbols) versus analytic solution (solid line) for
dp=dt. The slope is�40 dB/decade, i.e., a1=r law forH .

shows residual values of the1=r3 staticE-field for p (relevant field
components are indicated as spherical coordinate components). The
accumulated charge evaluated from (4) amounted to 174.6111 pC. The
dashed line represents the field of two point charges of such a value,
while the solid line refers to uniform distributions in a volume�3. Sim-
ilar to [2], FDTD results deviate from the analytic ones within five cells
off the dipole and fit neither the point, nor the distributed charge field
values. This is due to the coarse spatial sampling of the grid close top.

Fig. 2 also shows the ABC’s inability to deal with static fields:
starting from�10 cm to the boundary, fields deviate from expected
values in different ways. Although this is not evident on a loga-
rithmic scale,E� tends to linearly decrease, even changing sign at
the boundary,Er tends to become a constant. In fact, when in the
second-order ABC’s equation, the temporal derivative vanishes and
only a linear or constant spatial dependence is allowed.

Deviations from analytic solutions are five orders of magnitude
lower than the field between the dipole charges, e.g.,Egap taken as
a reference. This value can be deduceda priori by applying grid
symmetry considerations and the Gauss theorem in a discrete form on
the faces of a cubic cell of edge� centered around a charge

Q = 3"oEgap�
2: (8)

Fig. 3 shows the1=r2H normalized field with the simulation ar-
ranged to emphasize thedp=dt term of the electric dipole. Figs. 4
and 5 show them anddm=dt normalized contributions of the mag-
netic dipole, respectively. Previous remarks on the fields’ dependence
still hold in these cases. Tables I and II prove charge and energy con-
servation to be satisfied by the algorithm. The energy (although in a

Fig. 4. FDTD results (open symbols) versus analytic solutions (solid line) for
m. The slope is�60 dB/decade, i.e., a1=r for H andH .

Fig. 5. FDTD results (open symbols) versus analytic solution (solid line) for
dm=dt. The slope is�40 dB/decade, i.e., a1=r law forE .

TABLE I
ELECTRIC CHARGE CONSERVATION FORp (STATIC CASE)

TABLE II
ENERGY CONSERVATION FORp (STATIC CASE)

closed structure) and charge conservation properties can also be shown
to hold by an algebraic proof [8]. Table I compares electric charge as
calculated, in two independent ways, from (4) and (8). Table II com-
pares contributions of space stored energy, energy radiated trough the
grid boundaries, and energy injected directly by the source. The latter
must equal the sum of the first two.Vgap(t), evaluated from (5), is the
electromotive force (EMF) along the ICE (Is = Igap andDTC is
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TABLE III
ENERGY CONSERVATION FORm (STATIC CASE)

TABLE IV
POWER BALANCE FORp AT 1.8 GHz.I = 1 A

(a) analytic result.(b) resistor.(c) zero mean value pulse.

used instead of a lumped resistor). Table III shows the same balance
form. Here,Vloop(t), calculated usingE�, is the EMF along the cur-
rent loop. Finally, Table IV shows, forp, a balance in the frequency
domain (1.8 GHz) between the source power and corresponding flux
leaving the grid boundaries. To avoid static fields, both methods de-
scribed above are used. Calculated data are compared to the analytic
value of the power delivered by an ICE of the same length (first row).
The observed deviation is within 0.15%; a figure that would not be
reached without using methods to prevent static fields. If these fields are
not removed in accordance with the techniques suggested here, special
post-processing of data [9], [10] is needed. Otherwise, an instability
is produced by Fourier transforming, even when time-domain fields’
values converge satisfactorily.

V. CONCLUSIONS

Apart from high-frequency applications, the FDTD method is also
capable of solving static problems. The nonrecognition of this ability
has led some investigators to consider such solutions, which may cause
serious problems in the frequency domain, as numerical artifacts. In
this paper, besides proposing techniques to eliminate them, we have
presented the possibility of using the FDTD method in static and quasi-
static calculations (electric and magnetic dipoles). However, it has not
yet been determined if the FDTD method can efficiently compete with
consolidated scalar techniques because it typically still involves an ex-
cessive number of time steps needed to attain acceptable solutions.
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An Improved Algorithm of Constructing Potentials From
Cauchy Data and Its Application in Synthesis of

Nonuniform Transmission Lines

Gaobiao Xiao and Ken’ichiro Yashiro

Abstract—It is required to construct a potential function from Cauchy
data in the synthesis of arbitrarily terminated nonuniform transmission
lines. An improved algorithm for this problem is discussed in this paper.
With the proposed algorithm, not only is computation time reduced, but
the possible divergence of the potential function that sometimes occur when
adopting the successive approximation method is also avoided. It has been
applied successfully to designs of nonuniform transmission-line filters or
tapers through solving inverse problems.

Index Terms—Filter, inverse problem, nonuniform transmission lines.

I. INTRODUCTION

The synthesis of nonuniform transmission lines (NTLs) has been
investigated by many authors [1]–[4] and, among them, the methods
based on solving inverse scattering problems are probably most
promising. We have proposed a numerical method to synthesize
arbitrarily terminated NTLs by solving a related inverse classic
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